

2

Galley type for

# Encyclopedia of Evolution

# 94

4

## 5 DENSITY-DEPENDENT SELECTION

6  
7 Density-dependent selection is a special type of natural  
8 selection in which survival and reproduction depend on  
9 the population density of other individuals of the same  
10 species. Density in this context can be thought of as the  
11 number of other individuals nearby. The action of den-  
12 sity-dependent selection may be influenced by the vary-  
13 ing density of neighbors during different life stages. For  
14 instance, insect survival from egg to adult may depend  
15 on the density of larvae, whereas the number of eggs  
16 laid by females may vary with adult density.

17 **Development of Logistic Theory.** Robert MacAr-  
18 thur (1962) was the first to develop the mathematical  
19 relationship between ecological theories of population  
20 growth and the effect of natural selection at different  
21 densities. MacArthur accomplished this with the aid of  
22 the logistic equation of population growth. This ecolog-  
23 ical model states that populations at low densities will  
24 grow exponentially at the intrinsic rate of population  
25 growth ( $r$ ). The logistic model also assumes that, as a  
26 population becomes more crowded, the rate of growth  
27 declines. The population ceases to grow when it reaches  
28 its carrying capacity ( $K$ ), which is the equilibrium popu-  
29 lation size.

30 Classical theories of natural selection measured fit-  
31 ness by calculating the intrinsic rate of growth ( $r$ ) of a  
32 population. This parameter tends to be maximized by  
33 maximizing fertility and survival at low population den-  
34 sity. MacArthur extended this idea by suggesting that, at  
35 high population density, the population size at carrying  
36 capacity ( $K$ ) would be an appropriate measure of fitness.  
37 This theory has sometimes been referred to as  $r$  and  $K$   
38 selection, drawing from the two parameters of the lo-  
39 gistic equation. In 1971, Roughgarden generalized these  
40 ideas by suggesting that fitness may be equated with per  
41 capita rates of reproduction and population growth. An  
42 example of this theory is shown in *Figure 1*. At low popu-  
43 lation density, natural selection will favor the increase  
44 and ultimate fixation of the  $AA$  allele because the  $AA$   
45 homozygotes have highest fitness. However, at high den-  
46 sity, natural selection would favor increases in the alter-  
47 native  $AA$  allele. Most importantly, the outcome of evo-  
48 lution depends on the density of the environment.

49 **Trade-offs at Low and High Densities.** A key to  
50 this theory is the idea of trade-offs. As illustrated in Fig-  
51 ure 1, the genotype that is best at low density has the  
52 lowest fitness at high density and vice versa. If these  
53 types of trade-offs did not exist, then there would be one  
54 best genotype for all environments. Although there are

"Insert period" PE

"1's should be subscripts" PE

"2 should be subscript" PE

55 no first principles that can be invoked to prove that  
56 trade-offs exist, there are some simple arguments that  
57 suggest this is a reasonable assumption. Martin Cody  
58 (1966), first developed this idea in the context of life  
59 history evolution. Cody argued that all organisms must  
60 contend with limited amounts of time and energy. As  
61 soon as they devote more of their time and energy to,  
62 say, reproduction, they will have less time and energy  
63 for other activities, such as competing for food.

64 If the trade-off assumption is valid, those populations  
65 that have evolved to grow fastest at low density should  
66 do poorly at high density and vice versa. These ideas  
67 have been tested by maintaining populations of fruit flies  
68 (*Drosophila melanogaster*) at very low and very high  
69 densities. After eight generations of evolution, the popu-  
70 lation growth rates of the high- and low-density adapted  
71 populations differentiated, and the predicted trade-offs  
72 were observed (Figure 2).

73 These populations of fruit flies have been studied in  
74 more detail to determine which traits changed to cause  
75 the observed differences in population growth rates. At  
76 least three larval behavioral traits become differentiated  
77 between the low- and high-density populations. The  
78 high-density populations show elevated larval feeding  
79 rates compared to the low-density populations. In fruit  
80 flies, it is known that high feeding rates translate into  
81 increased competitive ability for limited food, which is  
82 certainly at a premium in crowded environments. How-  
83 ever, larvae with high feeding rates show reduced sur-  
84 vival at low density. Feeding rates then explain, at least  
85 in part, the trade-offs observed in Figure 2. When pop-  
86 ulations of fruit flies adapted to high larval densities are  
87 moved back to low densities, the flies' feeding rates rap-  
88 idly evolve to a lower level, presumably as a conse-  
89 quence of the reduced survival of fast feeders at low  
90 density. Individuals from populations adapted to high  
91 density also move greater distances while foraging com-  
92 pared to individuals from populations adapted to low  
93 density. Finally, larvae from populations that have  
94 evolved at high densities are less likely to metamor-  
95 phose into adults (pupate) on the surface of the food  
96 and tend to crawl farther from the food surface in search  
97 of a pupation site. This altered behavior also improves  
98 survival because larvae that pupate on the surface of the  
99 food in crowded cultures showed greatly elevated mor-  
100 tality rates.

101 **Development of Verbal Theory.** At the same time  
102 as MacArthur and Roughgarden were developing their  
103 quantitative theories of density-dependent natural selec-  
104 tion, an extensive verbal theory of  $r$  and  $K$  selection was  
105 developed. A verbal theory is simply one in which the  
106 major assumptions and conclusions are argued in words  
107 without reliance on formal mathematics. Verbal theories  
108 are acceptable ways of developing ideas in biology.  
109 However, the logic supporting the conclusions of verbal  
110 theories is not always as obvious as it is with mathe-  
111 matical theories. The verbal theories of  $r$  and  $K$  selection  
112 suggested populations that evolved at high density,

113 called *K*-selected, should be composed of individuals  
114 with increased competitive ability, larger body size, de-  
115 layed reproduction, and repeated reproduction over  
116 many years, or iteroparity. Populations evolved at low  
117 density, or *r*-selected, under this theory would display  
118 the opposite set of characteristics: reduced competitive  
119 ability, small body size, high levels of reproduction early  
120 in life, and survival over fewer reproductive years.

121 Many of the logical flaws with the verbal theory of *r*  
122 and *K* selection quickly became obvious to many sci-  
123 entists. For instance, the mathematical theories devel-  
124 oped by Roughgarden and MacArthur do not have adults  
125 of different ages; instead, all reproduction takes place  
126 at a single instant in time. The verbal theories mistak-  
127 enly inferred that the evolution of high carrying capac-  
128 ities would lead to adults surviving and reproducing over  
129 many years. The demise of the verbal theory was sig-  
130 naled by a series of review papers by Steven Stearns in  
131 1976 and 1977 that clearly revealed many of the flaws in  
132 the verbal theory.

133 **Studies of Wild Populations.** How important is  
134 density-dependent natural selection in wild popula-  
135 tions? This has been a difficult question to answer for  
136 several reasons. Much of the early empirical work fo-  
137 cused on natural populations that were thought to have  
138 experienced different density environments. Any differ-  
139 ence among these populations in characteristics like fer-  
140 tility and competitive ability was then attributed to den-  
141 sity-dependent natural selection. The problem with  
142 these types of studies is that historical information on  
143 the past density conditions of populations was often an-  
144 ecdotal or incomplete. Likewise, because these natural  
145 populations were not under human control, it was often  
146 impossible to rule out other factors, such as predation  
147 and herbivory, that may have systematically differed be-  
148 tween populations. Despite these problems, there are  
149 some well-studied natural populations where density-  
150 dependent selection is important.

151 Soay sheep in Scotland, for example, show pheno-  
152 typic differences in coat color and horn type. Both of  
153 these characteristics are under single- or two-locus ge-  
154 netic control. Paul Moorcroft and his colleagues (1996)  
155 showed that females with dark coats and small twisted  
156 horns survived better at low densities than females with  
157 light coats and untwisted horns. However, at high popu-  
158 lation densities the advantage was reversed. Because  
159 population densities vary dramatically in the studied  
160 populations, density-dependent selection is probably im-  
161 portant for the maintenance of the genetic polymor-  
162 phisms in horn shape and coat color.

163 Populations that grow according to the logistic model  
164 are expected ultimately to reach an equilibrium size  
165 equal to the carrying capacity. However, depending on  
166 the characteristics of the population, the approach to  
167 this equilibrium can be gradual and smooth, or it may  
168 be oscillatory, with the population overshooting and un-  
169 dershooting the carrying capacity by decreasing  
170 amounts each generation, or some populations may

171 never settle down to the equilibrium predicted by the  
172 logistic equation. These different scenarios reflect dif-  
173 ferent kinds of population stability. Just as density-de-  
174 pendent natural selection may affect population growth  
175 rates, it may also affect the stability of population size.  
176 Population stability is an important area of biological  
177 research because the long-term persistence of popula-  
178 tions, especially endangered species, can be affected by  
179 their tendency to fluctuate or stabilize. Theoretical work  
180 has come up with conflicting predictions. In some cases,  
181 density-dependent selection can lead to increased sta-  
182 bility of a population, whereas in other cases, stability  
183 decreased. There has been one large experiment per-  
184 formed with fruit flies. In this study, fruit flies were  
185 placed in an environment that caused the population  
186 size to fluctuate. Despite evidence of substantial genetic  
187 change in these populations as they adapted to the suc-  
188 cessive environments, none of these changes appear to  
189 have affected the stability of the populations. In this  
190 case, the evolution of density-dependent traits did not  
191 affect the stability of population size.

192 [See also Fitness; Life History Theory: An Overview;  
193 Demography; Genetic Polymorphism; Population Ge-  
194 netics.]

#### 195 BIBLIOGRAPHY

196 Cody, M. "A General Theory of Clutch Size." *Evolution* 20 (1966):  
197 174–184.

198 MacArthur, R. H. "Some Generalized Theorems of Natural Selec-  
199 tion." *Proceedings of the National Academy of Sciences USA*  
200 48 (1962): 1893–1897. In this classic paper, MacArthur proposes  
201 that fitness be measured by the carrying capacity of the logistic  
202 equation at high densities.

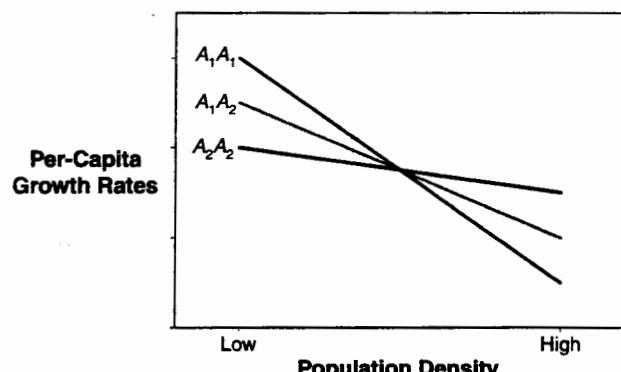
203 MacArthur, R. H., and E. O. Wilson. *The Theory of Island Bio-  
204 geography*. Princeton, N.J., 1967. The authors not only develop  
205 the ideas of  $r$  and  $K$  selection but consider many other inter-  
206 esting problems in ecology that influenced research in this area  
207 for the next twenty years.

208 Moorcroft, P. R., S. D. Albon, J. M. Pemberton, I. R. Stevenson, and  
209 T. H. Clutton-Brock. "Density-dependent Selection in a Fluctu-  
210 ating Ungulate Population." *Proceedings of the Royal Society  
211 of London B* 263 (1996): 31–38.

212 Mueller, L. D. "Theoretical and Empirical examination of Density-  
213 dependent Natural Selection." *Annual Review of Ecology and  
214 Systematics* 28 (1997): 269–288. This is a recent review of sci-  
215 entific research in this area.

216 Mueller, L. D., and F. J. Ayala. "Trade-off between  $r$ -selection and  
217  $K$ -selection in *Drosophila* Populations." *Proceedings of the Na-  
218 tional Academy of Sciences USA* 78 (1981): 1303–1305. The  
219 authors demonstrate trade-off in population growth rates due  
220 to density-dependent natural selection.

221 Mueller, L. D., and A. Joshi. *Stability in Model Populations*. Prince-  
222 ton, N.J., 2000. Reviews some of the mathematical aspects of  
223 population stability analysis and discusses experimental re-  
224 search with fruit flies on the evolution of stability.


225 Roughgarden, J. "Density-dependent Natural Selection." *Ecology* 52  
226 (1971): 453–468. Develops the basic theory and predictions of  
227 density-dependent natural selection in a straightforward, clear  
228 fashion.

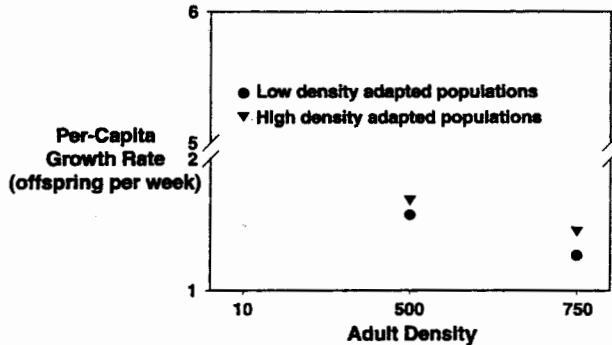
229 Stearns, S. C. "Life History Tactics: A Review of the ideas." *Quar-  
230 terly Review of Biology* 51 (1976): 3–47.

231 Stearns, S. C. "The Evolution of Life History Traits: A Critique of  
232 the Theory and Review of the Data." *Annual Review of Ecology*

234 and *Systematics* 8 (1977): 145-171.  
235 — LAURENCE D. MUELLER  
236  
237

2




3

4 **Density-Dependent Selection.** **FIGURE 1.** Per-capita growth  
 5 rates (fitness) for three genotypes. At low density, the  $A_1A_1$ ,  
 6 homozygote has the highest fitness whereas at high density,  
 7 the  $A_2A_2$  homozygote has the highest fitness. The  
 8 heterozygote has intermediate fitness at all densities.  
 9 (Laurence D. Mueller).

---

 10  
 11

12



13

14 **Density-Dependent Selection.** **FIGURE 2.** The per-capita  
 15 growth rates for populations of fruit flies (*Drosophila*  
 16 *melanogaster*) that have evolved at either very low density or  
 17 very high density. The populations that had adapted to low  
 18 densities for eight generations were tested at one low  
 19 density (10 adults) and two high densities (500 and 750  
 20 adults). The same tests were carried out simultaneously on  
 21 the populations that had been maintained at very high  
 22 densities. (Laurence D. Mueller.)

---

 23  
 24  
 25  
 26  
 27